
Voice Biometry Standard - Draft

Ondřej Glembek1, Lukáš Burget1, and Pavel Matějka1

1Speech@FIT group, Brno University of Technology, Czech

Republic

July 17, 2015

Abstract

This document serves as a description of the proposed draft for a voice

biometry standard.

1 Quick User Guide to i-vector Extraction

This standard is supposed to give formal description of the i-vector extraction
algorithm. However, we provide a python demo package for i) better under-
standing of the properties and features of the extraction, and ii) for convenience,
so that the user can immediately use the basic functions and do prompt cus-
tomizations. For convenience, we start this document by a quick user guide to
the i-vector extraction.

Python 2.7 was chosen as the implementation language. Apart from the
standard python libraries, numpy and scipy modules are required for the package
to work. The code is located in the python directory. The structure of the
software is given by two main python executable scripts and a set of python
modules. The two runnable scripts are:

• raw2ivec.py is the demo application for i-vector extraction. It directly
implements this standard for easy usage. It takes six input command-line
parameters:

LIST FILE

List of files with relative paths and no extensions. This list defines
the paths to the input and output files relative to the paths defined
below. The audio files assume a .wav extension.

VAD DIR

Directory with the voice-activity definition. If the parameter is set to
auto, then VAD is computed using a predefined energy-based VAD
algorithm. Otherwise, the files are assumed to be gzip-commpressed
text file, whose format is two-column (space-separated) list of start

1



and end voiced-segments (in seconds). See test/vad/fisher-english-p1
directory for examples. The extension of these files is expected to be
.lab.gz.

WAV DIR

Directory with the wave files. The files are expected to be in MS
wave format and to have .wav extension.

UBM DIR

The GMM UBM file. This is a gzipped text file where each line
consist of a Gaussian weight, vector of its means, and a vector of the
variances. This path should point to the models/GMM.txt.gz file,
which is a part of this standard.

T FILE

The i-vector extractor matrix. This is a gzipped text file with plain
matrix definition. This path should point to the models/v600 iter10.txt.gz

file, which is a part of this standard.

OUT DIR

The output directory. The output files are saved to the relative paths
as specified in the LIST FILE, and their extension is set to .i.gz.
The format is a gzipped text file, containing single line of the i-vector.

In the test directory, we provide the testme ivec.py.sh one-touch script,
which demoes the usage of the raw2ivec.py script on the example data.

• runplda.py is a demo for scoring the i-vectors. This script is NOT part
of the standard and is provided as a courtesy to users who want to quickly
test their i-vectors using a state-of-the-art PLDA backend.

ENROLL LIST

List of enrollment files (i-vectors) with relative paths and no exten-
sions. This list defines the paths to the input and output files relative
to the paths defined below. The extension of these files is expected
to be .lab.gz.

ENROLL DIR

Directory with the enrollment i-vectors.

TEST LIST

List of enrollment files (i-vectors) with relative paths and no exten-
sions. This list defines the paths to the input and output files relative
to the paths defined below. The extension of these files is expected
to be .lab.gz.

TEST DIR

Directory with the test i-vectors.

PLDA MODEL DIR

PLDA model definition directory. The directory contains the PLDA
model matrices as well as other i-vector normalization parameters.
This path should point to the models/backend directory.

2



OUT FILE

The output directory. The output files are saved as a full matrix of
scores where rows correspond to the individual enrollment i-vectors
while columns correspond to the individual test i-vectors. The order
is as specified by the corresponding lists.

2 Introduction

Human voice is an indispensable part of personal identity. The exchange of
voice data in its raw format (waveform) is however complicated due to legislative
issues in several countries around the world. The main objective of this initiative
is to standardize voice representation based on i-vectors (to be defined later) as
a common format for the exchange of voice data.

Multiple organizations have developed and deployed voice biometry tech-
nologies such as speaker verification systems, authentication systems, caller ID,
etc. We believe that existence of such standard would facilitate the integration
of their technologies into existing systems and seamless communication with
other systems world-wide. The standard would define a simple, compact and
easy-to-understand format of voice data that could be transmitted by all means
of communication.

The proposed format for voice data is based on the i-vector paradigm. It pre-
serves most of the statistical information needed for speaker verification without
the need of recording the voice itself. Thus, it could be used in the same way
as e.g. finger-prints in the forensic science today. This should help the po-
lice, intelligence, border service agencies as well as other commercial and non-
commercial institutions to exchange information quickly and reliably without
having to worry about legal issues.

2.1 What Is Voice Biometry

Voice biometry or speaker identification is the process of finding and attaching a
speaker identity to the voice of an unknown speaker. Automated speaker iden-
tification systems do this by comparing voice with stored samples in a database
of voice models. Voice biometrics alone can be used as a method of personal
authentication. The information is extracted in the form of sufficient statistics
as the person speaks. Instead of recording the whole utterance, the extracted
statistics are compacted and subsequently used in the verification process.

Voice biometry can also be understood as an additional layer of security to
the traditional password/passphrase systems. In this sense, a given password is
pronounced by the person rather than being transmitted directly to the authen-
ticating authority. Combined with encryption techniques, the voice-augmented
password provides higher security for sensitive information.

Ever since their introduction in Speaker Recognition, i-vectors have been
widely used in multiple fields of speech processing, such as Language Recog-
nition [1], Age Estimation [2, 3], Emotion Detection [4], and even in Speech

3



Recognition [5, 6]. The so-called i-vector is an information-rich low-dimensional
fixed-length vector extracted from the feature sequence representing a speech
segment (see Section 3 for details on i-vector extraction).

Due to these properties, the i-vectors are ocassionally referred to as audio
voice-prints1. As such, they can be used for audio indexing purposes, informa-
tion exchange (e.g. forensic or intelligence agencies), speaker search, etc. Such
usage, however, assumes that the i-vector extraction method (including the pa-
rameters of the method) is kept fixed, so that all i-vectors are compatible, and
that their direct comparison is feasible.

2.2 The goals of this standard

The goals of this work are following:

• Define a unified i-vector extraction method, i.e. provide the algorithm
description as well as the aglorithm parameter definition.

• Enable users of the voice biometry technologies (speaker verification, speaker
identification, clustering of recordings based on speakers) to exchange
voice biometry information without having to exchange audio recordings

• Have a reference software implementation that can be used for verification
of new implementations

• Unify and open research of techniques that works with i-vectors (speaker
comparison, speaker clustering, techniques for adaptation to news acoustic
channels and conditions)

• Help the research and development (R&D) in speaker recognition by al-
lowing the R&D labs to obtain i-vectors from their partners and customers
who are reluctant to share raw audio for privacy and legal reasons.

The goal IS NOT to freeze any research and development of new algorithms
and techniques. The idea is that the vendors would have the possibility to ex-
port/import standard i-vectors in their applications to enable data exchange.
However, there is still expected to be a competition among vendors whose al-
gorithms would keep up with the state-of-the-art research. It is expected that
this standard be updated to next version in the future.

2.2.1 Level of Standardization

The following parts of the Speaker Recognition system are being standardized:

• The most wide spread algorithm (i-vectors) is standardized

1Let us stress that the term voice-print has been historically used in various ways, mainly
in the forensics [7] and should therefore be treated with care [8, 9]. For this reason, we do not
use this term through out the work. Rather, we conservatively keep using i-vectors.

4



• Only the minimal possible algorithmic part that enable data exchange is
standardized, block that are not essential to get compatible results are
free to change

• The data exchange formats is standardized

• The standard comes mainly from implementations and features that are
spread among the research community

It is important to stress out that the following is not standardized:

• Voice activity detection

• i-vector post-processing

• i-vector scoring

All of these steps will be described in the following sections.

3 The Definition of the Standard

The i-vector systems have become the state-of-the-art technique in the speaker
verification field [10]. They provide an elegant way of reducing the large-
dimensional input data to a small-dimensional feature vector while retaining
most of the relevant information. The technique was originally inspired by
Joint Factor Analysis framework introduced by Patrick Kenny [11, 12].

Let us first state the motivation for the i-vectors. The main idea is that the
speaker- and channel-dependent GMM supervector s can be modeled as:

s = m + Tw (1)

where m is the UBM GMM mean supervector, T is a low-rank matrix rep-
resenting M bases of the reduced total variability space, and w is a standard
normal distributed vector of size M .

For each observation X , the aim is to estimate the parameters of the posterior
probability of w:

p(w|X ) = N (w;wX ,L−1
X

) (2)

The i-vector is the MAP point estimate of the variable w, i.e. the mean wX

of the posterior distribution p(w|X ). It maps most of the relevant information
from a variable-length observation X to a fixed- (small-) dimensional vector. T

is reffered to as the i-vector extractor.
This standard defines the algorithm of extracting the i-vector from the input

data, which are in the form of an audio recording.
To deploy the full speaker recognition system, the user needs a classifier for

i-vector comparison. This stage is not part of this standard. However, as a
courtesy and for sake of completness, we are including a description and a demo
application of a commong classifier—the PLDA. The system diagram is shown
in Fig. 1.

5



audio VAD features i−vector
extraction

i−vector
norm

GMM−UBM

i−vector
statistics

audio VAD features i−vector
extraction

i−vector
norm

LDA
mean/var norm
length−norm

PLDA score

enroll:

test:

Figure 1: Overall schematic of the system.

Let us stress out that the system has been optimized for telephone audio
quality. This is reflected in the feature extraction as well as in the data which
were used to train the different steps of the i-vector extraction.

Let us now describe each stage of the system in detail.

3.1 Input Data

Feature Extraction—MFCC

First, preemphasis is performed on the signal by using a high-pass filter, which
is defined as a difference of the current audio sample and a scaled-down previous
audio sample. The scale constant is referred to as the preemphasis coefficient.

We use cepstral features, extracted using a 25 ms Hamming window. We
use 24 Mel-filter banks and we limited the bandwidth to the 125–3800Hz range.
19 Mel frequency cepstral coefficients together with zero-th coefficient are cal-
culated every 10 ms.

This 20-dimensional feature vector is subjected to short time mean- and
variance-normalization using a 3 s sliding window. Delta and double delta coef-
ficients were then calculated using a five-frame window giving a 60-dimensional
feature vector.

The Code

The code for the MFCC extraction is located in the features.py module. At
the start of the main script, the filter-bank definition is computed using the
mel fbank mx function. The winlen nfft parameter defines the analysis win-
dow length, set to 200 audio samples. fs is the sampling frequency of the
audio (constantly set to 8000 Hz). NUMCHANS defines the 24 Mel-filter banks,
and LOFREQ and HIFREQ parameters define the lower 125 Hz and upper 3800 Hz
filter-bank range, respectively.

Once the Mel filter-banks is defined, the core MFCC computation is per-
formed using the mfcc htk function. The following paremeters are specified:

• sig — array of the acoustic signal in 8000 Hz sampling frequency

6



• window — framing window length, set to 200 acoustic samples (25 milisec-
onds windows width)

• noverlap — window overlap set to 120 acoustic samples (10 miliseconds
window shift)

• fbank mx — filter-bank definition as defined in the previous paragraph

• 0 — indicates at which position the zero-th MFCC coefficient apperas
(set to ”first” to prepend the coefficient to the feature vector)

• NUMCEPS — number of required cepstrum coefficients, set to 19

• RAWENERGY — includes the frame Energy, set to True

• PREEMCOEF — defines the preemphasis coefficient, set to 0.97

• CEPLIFTER — balancing coefficient of the cepstral coefficients by a window
for a flatter dynamic range, set to 22

• ZMEANSOURCE — removes the DC offset locally from each frame, set to
True

• ENORMALISE — normalizes the energy

• ESCALE — energy scaling constant, set to 0.1

• SILFLOOR — energy flooring constant, set to 50

• USEHAMMING — set to true to weight a signal frame by a Hamming window
function

The feature extraction is augmented by adding first- and second-order deriva-
tives. This step is marked as [add deriv] and is computed in the add deriv

function. The derivatives are computed using a 5-frame window—2 frames left
context, 2 frames right context, and the current frame.

In the the following step ([reshape]), the feature coefficients are re-ordered
to match the model training. This step has no functional meaning, however the
training procedure (which is not included in this work) defined the feature order
in a different way.

Sufficient Statistics

The input data for the observation X is given as a set of zero- and first-order
statistics — nX and fX . These are extracted from F dimensional features using
a GMM UBM with C mixture components, defined by a mean supervector m,
block-diagonal covariance matrix Σ, and a vector of mixture weights ω. For
each Gaussian component c, the statistics are given respectively as:

N
(c)
X

=
∑

t

γ
(c)
t (3)

f
(c)
X

=
∑

t

γ
(c)
t ot (4)

7



Table 1: GMM UBM training corpus statistics.

Database Amount of speech data [hours]

nist-sre-test2004 35.80
nist-sre-train2004 97.32

nist-sre-test2005 59.22
nist-sre-train2005 95.00

nist-sre-test2006 82.59
nist-sre-train2006 64.73

nist-sre-dev2008 43.15
nist-sre-follow2008 142.54
nist-sre-test2008 199.99
nist-sre-train2008 335.64

Total 1156.03

where ot is the corresponding feature vector in time t, and γ
(c)
t is its occupation

probability. The complete zero- and first-order statistics supervectors are fX =
(

f
(1)
X

′

, . . . , f
(C)
X

′
)′

, and nX =
(

N
(1)
X

, . . . , N
(C)
X

)′

.

The GMM UBM parameters are part of this standard. They were trained
on the NIST SRE 2004-2008 data. The GMM UBM contains 2048 Gaussian
components and the model was trained using the EM algorithm by sequential
doubling the number of Gaussians 10-iteration EM cycles. Both training and
test sets of the corpora were used. The amount of data used is summarized by
Tab. 1.

The Code

The GMM statistics are computed via the gmm eval function defined in the gmm
module. The function takes two inputs: the matrix of input data and the GMM
definition. The algorithm is optimized for speed where quadratic data expansion
is involved, therefore, it has quadratic memory complexity w.r.t. number of data
points. Therefore, the statistics are computed in batches of 1000 samples and
summed in a loop.

Statistics Normalization

For convenience, we center the first order statistics around the UBM means,
which allows us to treat the UBM means effectively as a vector of zeros:

f
(c)
X

← f
(c)
X
−N

(c)
X

m(c)

m(c) ← 0

8



Similarily, we “normalize” the first-order statistics and the matrix T by the
UBM covaricances, which again allows us to treat the UBM covariances as an
identity matrix2:

f
(c)
X

← Σ(c)− 1

2 f
(c)
X

T(c) ← Σ(c)− 1

2 T(c)

Σ(c) ← I

where Σ(c)− 1

2 is a Cholesky decomposition of an inverse of Σ(c), and T(c) is an
F ×M sub-matrix of T corresponding to the c mixture component such that

T =
(

T(1)′, . . . ,T(C)′
)′

.

The Code

The statistics normalization is computed in the normalize stats function de-
fined in the main script raw2ivec.py. It takes four parameters as an input
(vectors of zero-order statistics n, vector of first-order statistics f, super-vector
of ubm gmm means ubm means, and a super-vector of the inverted UBM GMM
standard deviations ubm norm). The output is a tuple of normalized zero- and
first-order statistics.

3.2 i-vector Extraction

As described in [11] and with the data transforms from previous section, for an
observation X , the corresponding i-vector is computed as a point estimate:

wX = L−1
X

T′fX (5)

where L is the precision matrix of the posterior distribution, computed as:

LX = I +
C

∑

c=1

N
(c)
X

T(c)′T(c) (6)

The computational complexity of the whole estimation for one observation is
O(CFM +CM2 +M3). The first term represents the T′fX multiplication. The
second term represents the sum in (6) and includes the multiplication of L−1

X

with a vector. The third term represents the matrix inversion.
The memory complexity of the estimation is O(CFM + CM2). The first

term represents the storage of all the input variables in (5), and the second term
represents the precomputed covarance matrices in the sum of (6).

Note that the computation complexity grows quadratically with M in the
sum of (6), and linearily with C. This becomes the bottle-neck in the i-vector
computation, resulting in high memory and CPU demands.

2Part of the factor estimation is a computation of T
′
Σ

−1
f , where the decomposed Σ

−1

can be projected to the neigboring terms, see [11] for the detailed formulas.

9



The Code

The i-vector extraction is implemented in the ivector.pymodule. The T(c)′T(c)

terms from (6) for all Gaussian components (c) are precomputed using the func-
tion compute VtV at the begining of the program, since we only need to compute
them once per batch. Eq. (5) is implemented in the estimate i function.

3.3 i-vector Binary and ASCII Formats

The i-vectors could essentially be stored in any format, however, we chose to
introduce a binary format that—appart from the i-vector itself—allows to store
the amount of speech that was used for the i-vector extraction, metadata, and
a CRC32 checksum. The ASCII version is a Base64 version of the binary byte
array [13].

Let us now describe the format itself by listing the fields as stored in the file.
All numeric values are stored as little-endian.

ID string

4-byte id string containing ”VBS1”

Version

4-byte signed integer defining the version of the standard (set to 1 in this
release)

Audio length

4-byte float storing number of seconds that were used for the i-vector
extraction. Note that this field is mandatory as it is typically used in
system calibration.

i-vector dimensionality

4-byte signed integer storing number of i-vector dimensions. This is set to
600 in this release.

i-vector definition

Array of 4-byte float numbers. The length of this array is defined by the
i-vector dimensionality field.

Metadata length

4-byte signed integer defining the size (in bytes) the metadata field. The
metadata is suggested to be pairs of null-terminated strings, each pair
being a key–value record in ASCII representation.

Metadata

Array of chars whose size is defined by the ”Metadata length” value. The
metadata is suggested to be pairs of null-terminated strings, each pair
being a key–value record in ASCII representation.

CRC32 checksum

4-byte signed integer defining the CRC32 checksum of all previous fields.

10



The Code

The python code for reading and writing the code is located in the ivector io.py

module. Reading the ivector is performed via the read binary ivector func-
tion whose input is the filename and the function returns a 3-tuple of the i-
vector, audio length, and the metadata field (set to None if no metadata is
stored). Writing is implemented in the write binary ivector function, whose
input is the i-vector, the audio length (in seconds), and an optional field of
metadata.

3.4 i-vector Extractor Training

Although not part of the standard, let us briefly describe the procedure by which
the i-vector extractor was trained. Model hyper-parameters T are estimated
using the same EM algorithm as in case of JFA [11]. Our algorithm makes use
of an additional minimum divergence update step [12, 14].

In the E step, the following accumulators are collected for all training ob-
servations i:

C =
∑

i

fiw
′

i (7)

A(c) =
∑

i

N
(c)
i

(

L−1
i

+ wiw
′

i

)

(8)

where wi and Li are the estimates from (5) and (6) for observation i. The M
step update is given as follows:

T(c) = CA(c)−1
(9)

The data used for computing the i-vector extractor matrix T

The amount of i-vector extractor training data is summarized by Tab. 2.
The training corpus consists of the following databases: Fisher English (part 1
and 2), NIST SRE 2004–2008, Switchboard (phase 2, phase 3, celluar part 1,
and celluar part 2).

3.5 Scoring

The scoring procedure is not intended to be the part of the standard. However
for convenience, we are providing an example that is being used in the latest
Speaker Recognition systems. First, we pre-process the i-vectors, and then, we
use a binary classifier to compute a likelihood-ratio of the same- and different-
speaker hypothesis for a given trial, i.e. an i-vector pair.

3.5.1 i-vector Pre-Processing

Before we apply the linear classifier to get a score of a trial, the i-vectors are
pre-processed. The same technique as in [10, 15] is used in this work. The
extracted i-vectors are scaled down using an LDA matrix to 200 dimensions, and

11



Table 2: I-vector extractor training corpus statistics.

Database Amount of speech data [hours]

fisher-english-p1 1954.84
fisher-english-p2 1936.19

nist-sre-all2010/interview/3min 37.44
nist-sre-all2010/interview/8min 57.74

nist-sre-all2010/phonecall/mic 18.79
nist-sre-all2010/phonecall/tel 69.20

nist-sre-test2004 99.51
nist-sre-train2004 286.84

nist-sre-test2005 388.16
nist-sre-train2005 272.66

nist-sre-test2006 448.68
nist-sre-train2006 185.48

nist-sre-dev2008 61.76
nist-sre-test2008 375.14
nist-sre-train2008 763.34
nist-sre-follow2008 217.92

sw2 phase2 740.19
sw2 phase3 439.59

sw cellular part1 258.99
sw cellular part2 397.69

Total 9010.23

further normalized by a within-class covariance matrix. Both of these matrices
are gender-independent and were estimated on the same data as the i-vector
extractor, except the Fisher data was excluded, resulting in 1684 female speakers
in 715 hours of speech and 1270 male speakers in 537 hours of speech.

The Code

The normalization parameters are stored in the models/backend directory as
backend.LDA.txt.gz for combined LDA projection and variance normalization,
and backend.mu train.txt.gz for global mean removal.

3.5.2 PLDA

To compare of i-vectors in a verification trial, we use a Probabilistic Linear
Discriminant Analysis (PLDA) model [16, 17]. It can be seen as a special case

12



of JFA with a single Gaussian component. Given a pair of i-vectors, PLDA
allows to compute the log-likelihood for the same-speaker hypothesis and for
the different-speaker hypothesis. One can directly evaluate the log-likelihood
ratio of the same-speaker and different-speaker trial using

s(φ1, φ2) = φ
T

1 Λφ2 + φ
T

2 Λφ1 + φ
T

1 Γφ1 + φ
T

2 Γφ2

+ (φ1 + φ2)
T
c + k, (10)

where Λ, Γ, c, k are derived from the parameters of PLDA as in [18].

The Code

The PLDA code as defined in Eq. (10) is implemented in the bilinear plda

function directly in the runplda.py script. The function takes the PLDA pa-
rameters as an input as well as matrices of input test and enroll i-vectors. Full
matrix of score (all i-vectors from test are scored with all i-vectors from enroll)
is then returned as an output. Running the script from the command line has
been described in Sec. 1.

4 Final Remarks

• This standard (and especially parameters of models) was developed and
tested on telephone data on which it should provide faitr performance.
Please, do not expect it to perform well on far-field, noisy, multi-channel
or cross-talked data.

• VAD performance is crucial for any spekaer recognition algorithms. The
provided energy-based VAD is a rudimentary one. The best you can do
is to check on your data with our implementation, then replace the VAD
for a better one.

• the code is not optimized for speed and or memory usage.

• when re-implementing the standard in other languages and/or other ar-
chitectures and operating systems, please always check that the produced
results are the same (not bit-exact but if the difference of the same i-vector
element is 1% or more, there is a problem)

5 Contacts

• Voice Biometry Standard’s web page: http://voicebiometry.org/

• VBS’s email: mailto:info@voicebiometry.org/

• Google group: http://groups.google.com/d/forum/voice-biometry-standard
and mailto:voice-biometry-standard@googlegroups.com

13

http://voicebiometry.org/
mailto:info@voicebiometry.org/
 http://groups.google.com/d/forum/voice-biometry-standard
mailto:voice-biometry-standard@googlegroups.com 


References

[1] David González Mart́ınez, Oldřich Plchot, Lukáš Burget, Ondřej Glembek,
and Pavel Matějka, “Language recognition in ivectors space,” in Proceed-
ings of Interspeech 2011. 2011, vol. 2011, pp. 861–864, International Speech
Communication Association.

[2] Mohamad Hasan Bahari, Mitchell McLaren, Hugo Van hamme, and
David A. van Leeuwen, “Speaker age estimation using i-vectors,” Eng.
Appl. of AI, vol. 34, pp. 99–108, 2014.

[3] Anna Fedorova, Ondrej Glembek, Pavel Matejka, and Tomi Kinnunen, “Ex-
ploring ANN back-ends for i-vector based speaker age estimation,” in Sub-
mitted to Interspeech, 2015, 2015.

[4] Marcel Kockmann, Lukáš Burget, and Jan Černocký, “Application of
speaker- and language identification state-of-the-art techniques for emo-
tion recognition,” Speech Communication, vol. 53, no. 9, pp. 1172–1185,
2011.

[5] Martin Karafiát, Lukáš Burget, Pavel Matějka, Ondřej Glembek, and Jan
Černocký, “ivector-based discriminative adaptation for automatic speech
recognition,” in Proceedings of ASRU 2011. 2011, pp. 152–157, IEEE Signal
Processing Society.

[6] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adaptation
of neural network acoustic models using i-vectors,” in Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE Workshop on, Dec
2013, pp. 55–59.

[7] Louis-Jean Boë, “Forensic voice identification in france,” Speech Commu-
nication, vol. 31, no. 22̆0133, pp. 205 – 224, 2000.

[8] Jean-François Bonastre, Louis-Jean Bimbot, Frédéric an Boë, Joseph P.
Campbell, Douglas A. Reynolds, and Ivan Magrin-Chagnolleau, “Person
authentication by voice: a need for caution.,” in INTERSPEECH. 2003,
ISCA.

[9] J.P. Campbell, W. Shen, W.M. Campbell, R. Schwartz, J.-F. Bonastre, and
D. Matrouf, “Forensic speaker recognition,” Signal Processing Magazine,
IEEE, vol. 26, no. 2, pp. 95–103, March 2009.

[10] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Transactions on Audio,
Speech and Language Processing, vol. PP, no. 99, pp. 1 –1, 2010.

[11] P. Kenny, “Joint factor analysis of speaker and session variability : Theory
and algorithms - technical report CRIM-06/08-13. Montreal, CRIM, 2005,”
2005.

14



[12] P. Kenny, G. Boulianne, P. Oullet, and P. Dumouchel, “Joint factor analysis
versus eigenchannels in speaker recognition,” IEEE Transactions on Audio,
Speech and Language Processing, vol. 15, no. 7, pp. 2072–2084, 2007.

[13] “Base64 Wikipedia article,” https://en.wikipedia.org/wiki/Base64.

[14] Niko Brümmer, “The em algorithm and minimum
divergence,” Agnitio Labs Technical Report. Online:
http://niko.brummer.googlepages.com/EMandMINDIV.pdf, Oct. 2009.

[15] Daniel Garcia-Romero, “Analysis of i-vector length normalization in
Gaussian-PLDA speaker recognition systems,” 2011, Submitted to ICSLP
2011.

[16] S. J. D. Prince and J. H. Elder, “Probabilistic linear discriminant anal-
ysis for inferences about identity,” in 11th International Conference on
Computer Vision, 2007, pp. 1–8.

[17] Patrick Kenny, “Bayesian speaker verification with heavy–tailed pri-
ors,” in Proc. of Odyssey 2010, Brno, Czech Republic, June 2010,
http://www.crim.ca/perso/patrick.kenny, keynote presentation.

[18] L. Burget, O. Plchot, S. Cumani, O. Glembek, P. Matějka, and
N. Brümmer, “Discriminatively trained probabilistic linear discriminant
analysis for speaker verification,” in Proc. of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Prague, CZ, May
2011, accepted for publication.

15


	Quick User Guide to i-vector Extraction
	Introduction
	What Is Voice Biometry
	The goals of this standard
	Level of Standardization


	The Definition of the Standard
	Input Data
	i-vector Extraction
	i-vector Binary and ASCII Formats
	i-vector Extractor Training
	Scoring
	i-vector Pre-Processing
	PLDA


	Final Remarks
	Contacts

